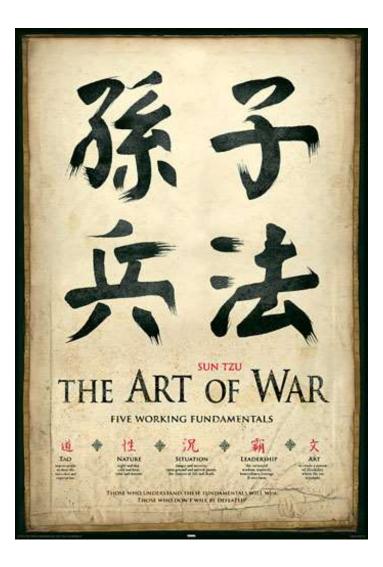
9° Πανελλήνιο Συνέδριο Κυτταρομετρίας με Διεθνή Συμμετοχή

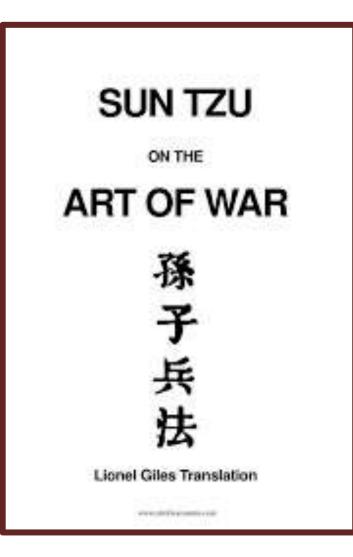
Προκαταρκτικό Επιστημονικό Πρόγραμμα

Δελφοί 27-29 Μαΐου 2016 Ευρωπαϊκό Πολιτιστικό Κέντρο Δελφών

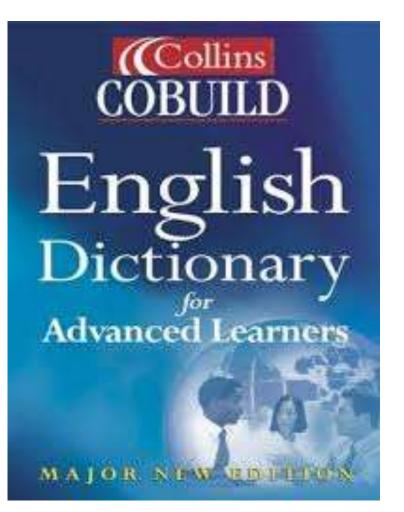
DELPHI 27 V 2016

CYTOMETRY STRATEGIES IN THE DIAGNOSIS OF HEMATOLOGICAL DISEASES


CLAUDIO ORTOLANI UNIVERSITY OF URBINO - ITALY


SUN TZU (544 b.C. – 496 b.C)

SUN TZU (544 b.C. – 496 b.C.)


THE ART OF CYTOMETRY

"Strategy without tactics is the slowest route to victory. Tactics without Strategy is the noise before defeat."

Sun Tzu

WHAT ARE TACTICS?

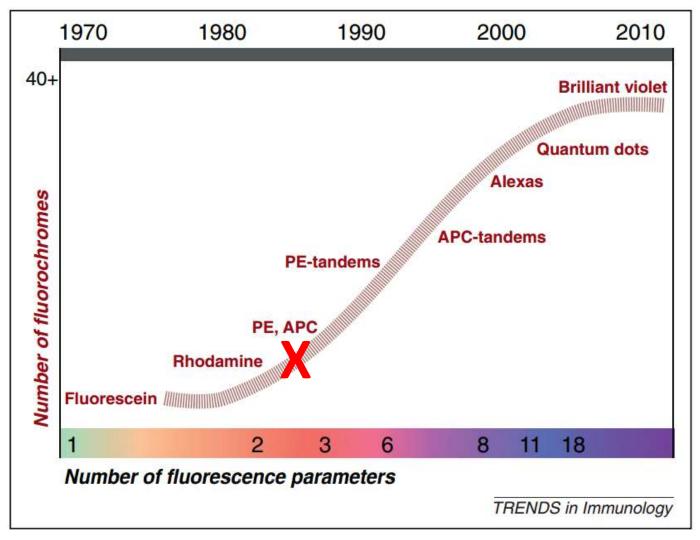
Tactics are the methods that you choose in order to achieve what you want in a particular situation

OUR TACTIC

Given that what we want in a cytometric analysis is a better characterization of the events, our tactic is

TO INCREASE THE DIMENSIONALITY OF THE DATA-SET

produced by our cytometer

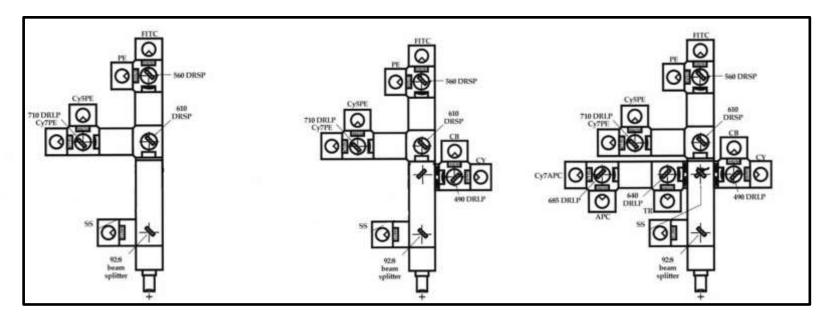

DATA-SET DIMENSIONALITY

		LIGHT SCATTER								FLUORESCENCE					TIME	
															•	
🖌 FCS Wi	izard 1	1 BETA 2	- 1519 4a.	fcs										-	- C - C	
															-	
File Da	tasets	Advan	ced Ab	out												
eader	Text	Data	AN Arysi	is Pa	aran eter Data	SC-W	CD81	CD117	CD138	CD27	CD38	CD19	CD28	CD45	Time	
		•				6640.896	251.94	103.74	205.2	183.54	316.39(963	-178.64	844.4	6926-36	56.3	
	FSC-	A	FSC-H		FSC-W	365.7	855	150.48	1690.52	1134 3 993	14046	1002.2	611.	772.56	56.3	
000001	1200	72.891	85282		92271.49	697.1953	942,779968	392.16	754.68	946.2	10382	1746.96	525.64	1329.36	55.4	
000001	1200	/2.031	00202		322/1.43	803.78	171	90.06	111.72	200.64	11.55999954	-58	90.4799957	104.399954	56.4	
000002	1147	15.906	93132		80724.37	894.13 168.3047	6939 17969 2770 2	861.839966 289.56	918.839966 491.34	10600.86	1984 75989	1919.79993	5932.23975 2065.44	33840 68	56.4	
000003	10010	90.961	77214		85037.88	110.06	384.18	18.24	431.34	-116.28	161,23999	-232	245.4	535.92	56.4	
000003	10013	10.301	//214		60037.66	301.7	200.64	74.1	26.22	108.299995	180 969991	23.1999989	134.56	174	56.6	
000004	22632	2.71	21503		68979.0859	511.84	286.139984	116.28	403.56	131.099591	850,279968	184,439987	443.12	2495.16	56.7	
000005	00050	202	50100		70000 71	140.94	784.32	261.06	619.02	538.22	15895.64	1546.27991	317.84	981.36	56.9	
000005	63358	5.793	56122		73986.71	5237 836	5263.38	774.06	906.3	1827,41992	14578.88	1158.84	2364.07583	21484.35	56.9	
000012 1093	37.586	86066	83256.43	87841 56	57068	100875 883	372.78	215.459991	616.74	121 979996	788.8	133.4	454	2679.59585	56.9	
000013 5724	11.82	41342	90740.66	36006.9	19609	120340.063	445.88	114	1324,67993	3168.06	7376.44	1622.84	293.47998	633.36	56.9	
000014 9347	75.96	73985	82801.11	44634.41	8 32515	89963.44	1062.48	344.28	8551.14	8632.08	10173.2	2836.2	599.72	904.8	56.9	
000015 7888	3 0859	63852	80963.51	24814.37	89 18146	89619.49	513	167.58	3563.64	4883.76	8822.96	2082.2	490.68	799.24	55.9	
000015 4315	4.8125	38231	73993.6	17662.02	11267	102733.477	288.419983	49.02	90.06	196.08	361,919983	92.7999954	103.24	214.599991	57	
000017 9612	22.46	74597	84446.87	78084.3	54346	94162.0859	257.639984	137.94	499.32	12.54	606.68	114,84	534.76	2929	57.1	
000018 2450	1.06	22711	70701.4844	8467.92	6540	84855.3	-2.28	-19.38	261.06	12.54	-34.8	30.16	64.96	25.5199986	57.1	
000019 5452	85,17	33584	106406.578	51127.86	31425	106625 789	1713.41992	348.84	793.44	-55.86	265.639984	-109.039993	370.039578	834.04	57.1	
000020 1023	193,484	81523	82313 6953	28895.58	21044	89987.68	457.139984	190.38	862.98	1174.2	18474.16	2308.4	255.2	738.92	57.2	
000021 4778	5.52	33095	94626 7344	41539.32	23941	113709.57	552 899963	218.88	510.72	809.399963	3782.76	2969.59985	396.72	777.199951	57.3	
000022 4632	27,18	41252	73598.8047	13447.43	95 9885	89154,4141	314.639984	88.92	300.96	441.18	76.56	-102.079994	161.23999	147.319992	57.3	
	3.9141	65595	81240.78	145574.5	(m)	54813.08	5600.82	1210.67993	1557.24	438.5	1669.24	477,919983	2425.55981	16176.1992	57.3	
000024 4746		42747	72764.0547	9957,899		85418.97	62.7	78.659996	257.639984	207.48	1.16	-140.36	29	55.84	57.3	
	4 6523	48484	75106.9453	13725.6	10565	85133.54	277.02	83.22	287.28	387.6	150.08	15.08	89.32	343.3E	57.5	
	82.625	80605	83486.24	123107.4		99479.3047	264.48	158.459991	483.36	47.88	672.8	177,48	720.36	3444.03979	57.5	
And the second	6.4141	52386	86653.76	37993.91	<u></u>	94381.375	543.779968	263.34	1160.52	1804.62	22261.5586	2903.48	610.16	1228,44	57.5	
000028 8649		66554	85173.28	55927.25	and have a strengt of strengt of	98602.41	1013 45996	290.699982	1390.79993	730.74	12943.2793	1664.6	702.959961	1646.03992	57.5	
000029 8464		55638	84511.43	79715.64		89091.63	753.54	198.36	449.15	399	534,519958	295.8	1716.79993	14638.3594	57.5	
	3 6641	78443	80095.28	87172.37		86469.13	305.52	140.22	541.5	142.5	598.32	505.759979	393.24	3224.7998	57.6	
000031 8818 000032 7961		64606	89458.7656	147339.3	94026	102695.3	835.62	466.258979	1289.34	153.9	1213.36	99.7599945	783	3270,03979	57.6	
000032 7961		43571	77606.65	19/01.48		81692.9	5820.84	78.659996	5.7 621.3	376.199982	2390.76 541.48	-170.519989	3521.76	26539 6387	57.6	
4952	0.60	43311	14030.40	17913 35	13405	12652 63	3020.04	212.44	WE1.3	2337.70	341,40	421.00	3381.70	50033.0301	21.0	

WE HAVE TWO WAYS TO INCREASE DATA-SET DIMENSIONALITY FIRST WAY (BY HARDWARE)

INCREASING THE NUMBER OF PARAMETERS BY INCREASING THE NUMBER OF PROBES

FLUORESCENT FLOW CYTOMETRY

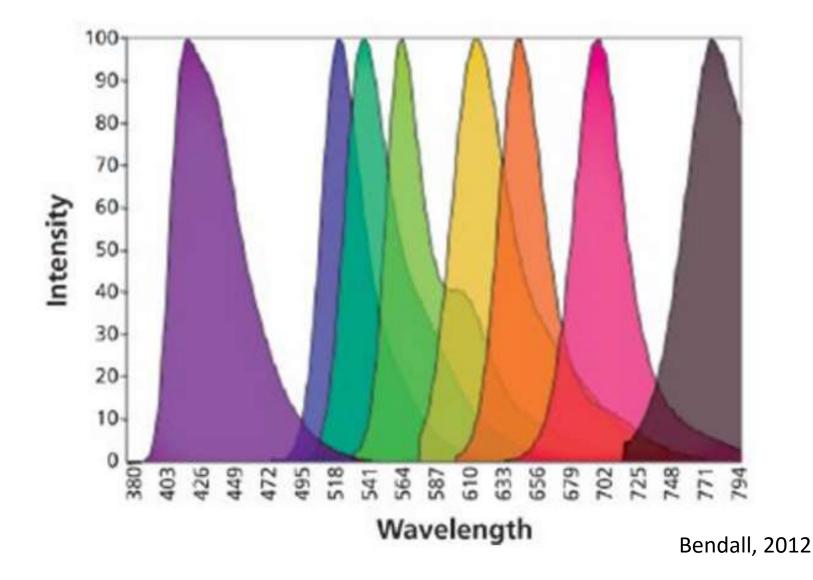

Bendall, 2012

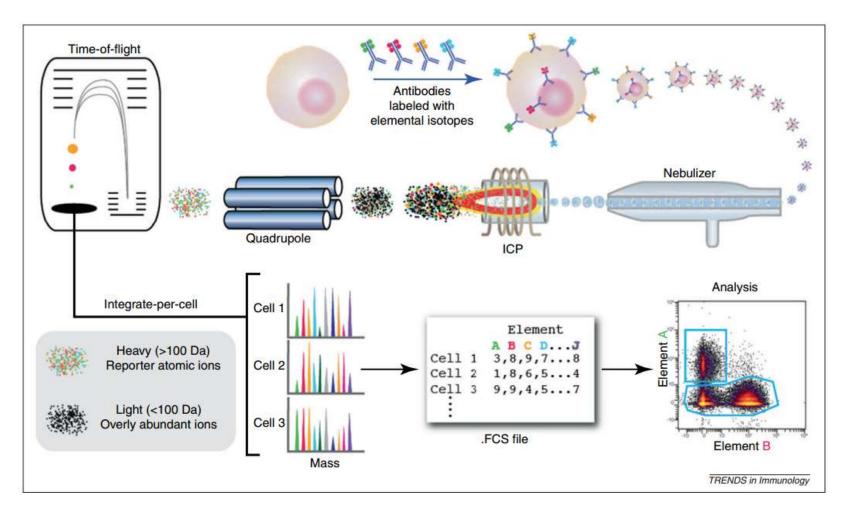
From: roederer@drmr.com
Date: Sat, 3 May 2014 18:24:50 -0400
To: cytometry@lists.purdue.edu
Subject: [Cytometry] Splitting the rainbow

I'm pleased to announce the dawn of a new era in fluorescence-based flow cytometry: A team headed by Pratip Chattopadhyay and Steve Perfetto in my lab [...] performed **the first 27-color fluorescence** experiment today. Despite virtually no optimization of the panel, this first attempt to break through the 18 color ceiling was a resounding success. We are on track to exceed 30 colors within the next few months.

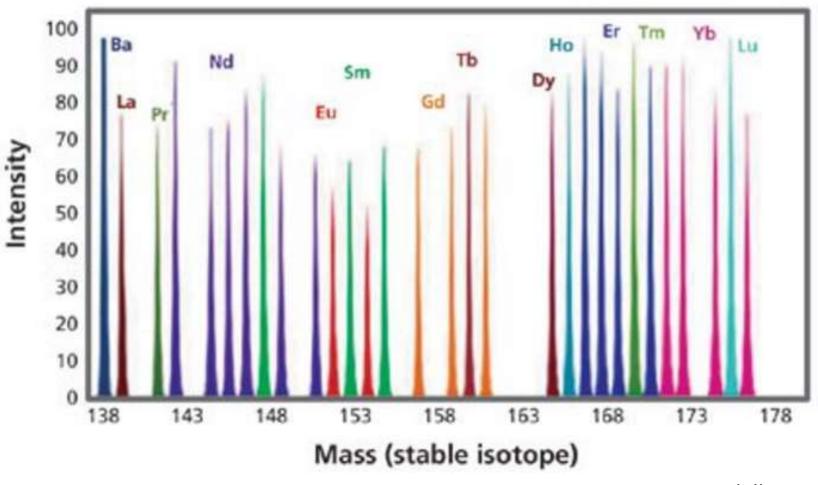
regards, Mr. ----

THE "SAGUARO EFFECT"





FLUORESCENT FLOW CYTOMETRY



... OR SOME OTHER MEANS ...

Bendall, 2012

MASS FLOW CYTOMETRY

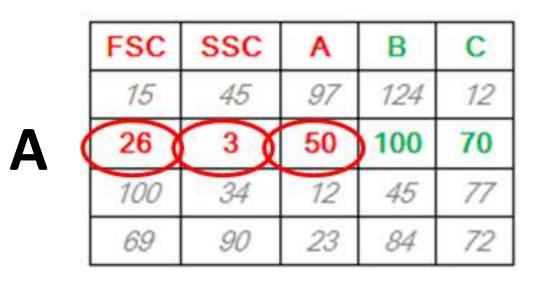
Bendall, 2012

COMPARISON BETWEEN METHODS

	Fluorescence FCM	Mass FCM
Probe	Fluorochromes	Mass isotopes
Max Parameters	29 (2 + 27)	37
Sensitivity range	0,1 - 10	1 - 2
Sampling		/
efficiency	> 95 %	< 30 %
Measured cells /		
sec	25.000	500 - 1000
Cells / h	25 - 60 million	2 million
Cost per probe	\$ 2,0 - 8,0	\$ 1,5 - 3,0
Sorting	Yes	Νο

MAIN DRAWBACKS

- FLUORESCENCE FCM
 - SPILLOVER (but please consider spectral compensation!)
 - AUTOFLUORESCENCE
- MASS FCM
 - LOW SENSITIVITY
 - LOW SPEED
 - NO USE OF FLUORESCENT PROBES COMMONLY USED IN CLASSIC FCM (INDO, CFSE, Rh123, and so on)
 - NO SORTING

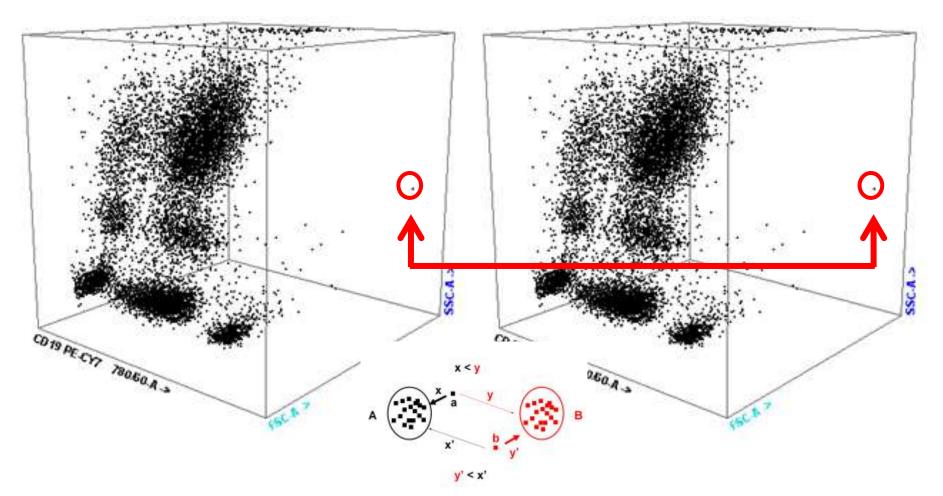

WE HAVE TWO WAYS TO INCREASE DATA SET DIMENSIONALITY

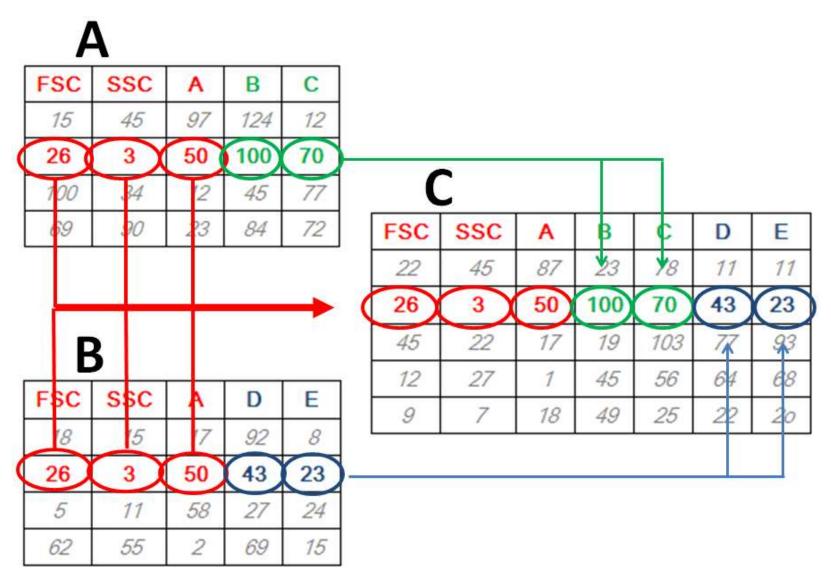
SECOND WAY (BY SOFTWARE)

MERGING TOGETHER DIFFERENT PARAMETERS OF CELLS SHARING THE SAME EXPRESSION OF SOME OTHER PARAMETERS

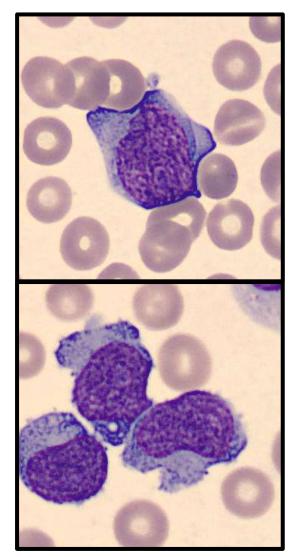
<u>http://www.ncbi.nlm.nih.gov/pubmed/25600947</u> <u>https://www.bioconductor.org/packages/release/bioc/html</u> <u>/flowBin.html</u>

HOW DOES IT WORK?

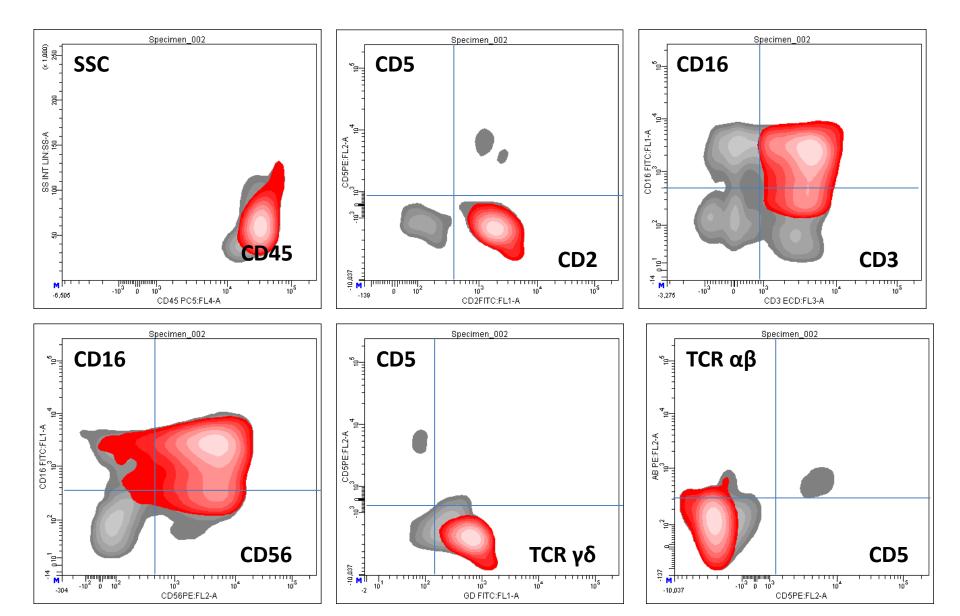


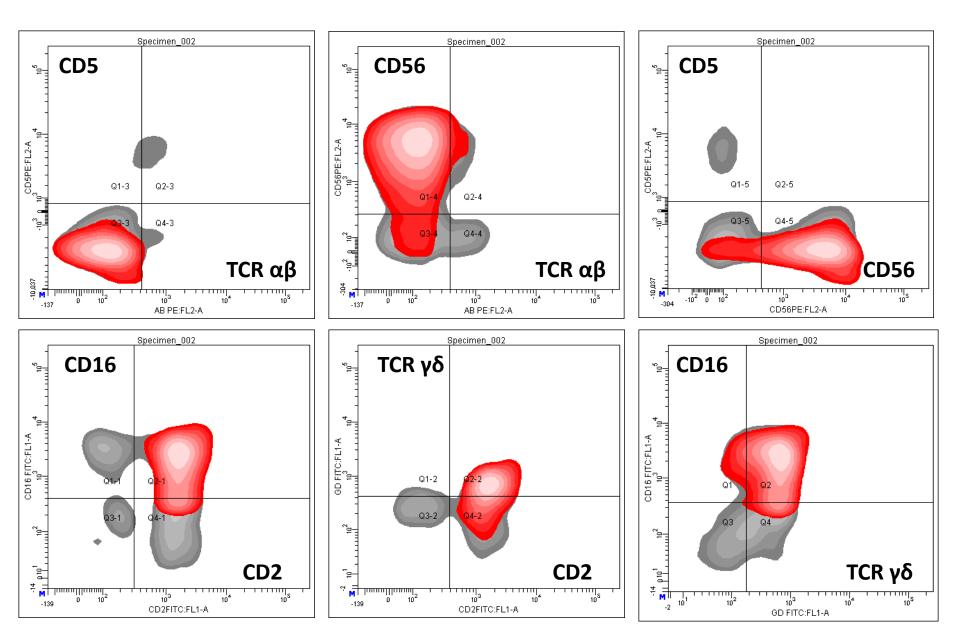

B

HOW DOES IT WORK?

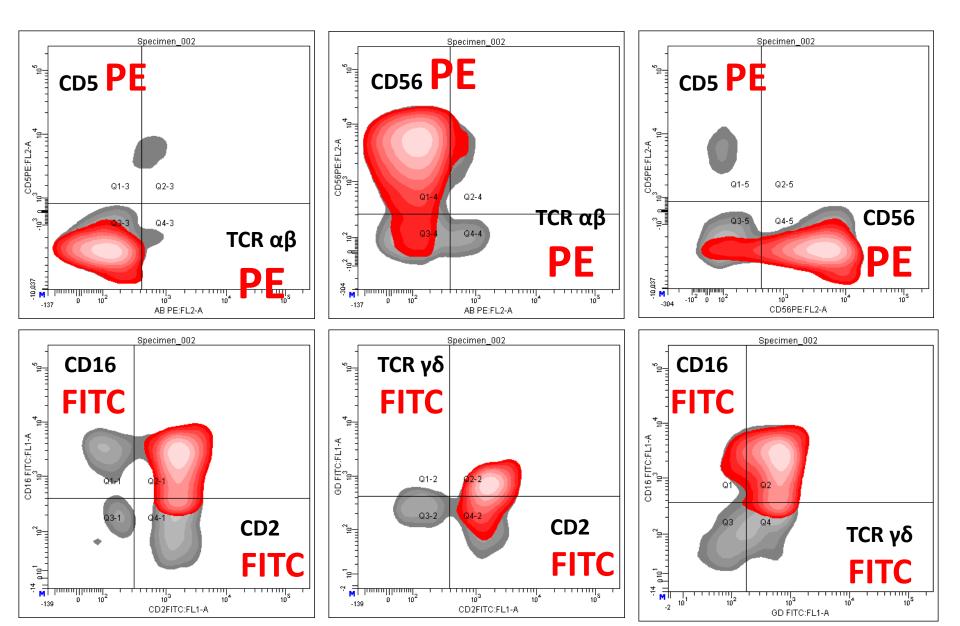

FILE A ≠ FILE B

HOW DOES IT WORK?


A PRACTICAL EXAMPLE OF DATA MERGING IN A CASE OF LEUKEMIZED HTSCL


"BACKBONE" PARAMETERS IN RED "PRIVATE" PARAMETERS IN BLACK

- 1st RUN: FSC, SSC, CD2, CD5, CD3, CD45
- 2nd RUN: FSC, SSC, CD16, CD56, CD3, CD45
- 3rd RUN: FSC, SSC, γδ, αβ, CD3, CD45


MERGING'S RESULTS

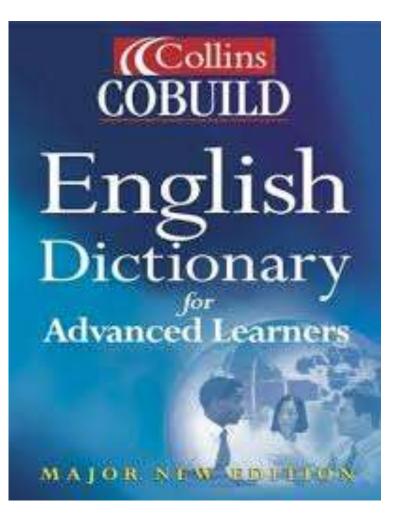
MERGING'S RESULTS

MERGING'S RESULTS

MAIN METHODOLOGICAL OBJECTIONS

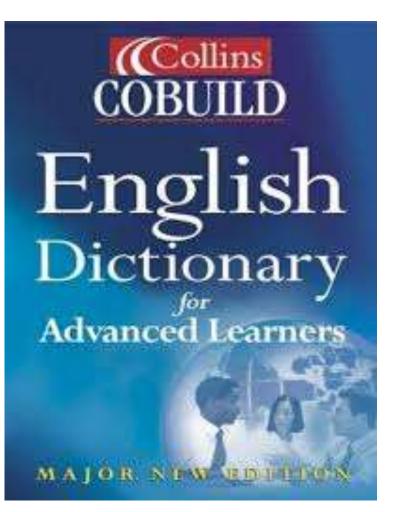
STATISTICAL

 The algorithms used to find the closest cell in two data files use the so-called "common Euclidean distance", which is not the best for data with noise due to Poisson's distribution


LOGICAL

 There is no mathematical or biological foundation to believe that the precise value of a cell in N dimensions means it is exactly the same cell as another cell with the same N values from another tube

David Novo, Purdue Cytometry Discussion List, 3/21/2016 3:37 PM


AND NOW, WHAT ABOUT **STRATEGY?**

WHAT IS STRATEGY?

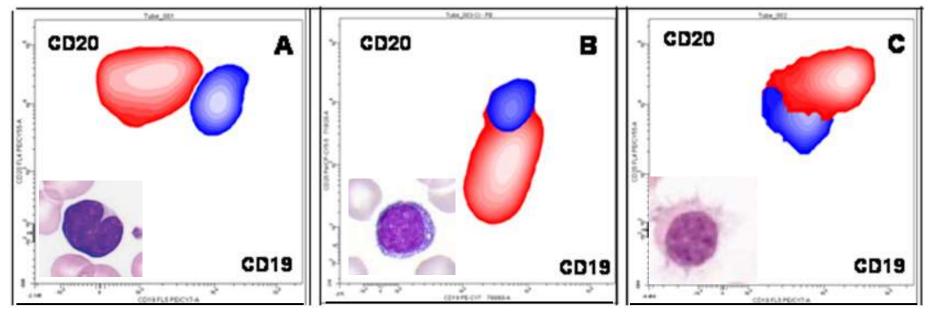
Strategy is a general plan or a set of plans intended to achieve something What is "something" in our case? It is diagnosis. But, strictly speaking, what is "diagnosis"?

DISAMBIGUATION

Diagnosis is [...] the discovery and naming of what is wrong with people who are ill or with things that do not work properly

WHAT IS WRONG WITH PEOPLE WHO ARE ILL?

- The disease itself
- The persistence of the disease over time
- The presence of the disease in a special compartment
- The resistance of the disease to the treatment
- The unwanted reactions to the therapy
- etc. etc.


AND WHICH ARE OUR STRATEGIES TO GET BETTER CYTOMETRIC "DIAGNOSES"?

 Remembering that every cytometric diagnosis is an image-driven diagnostic procedure

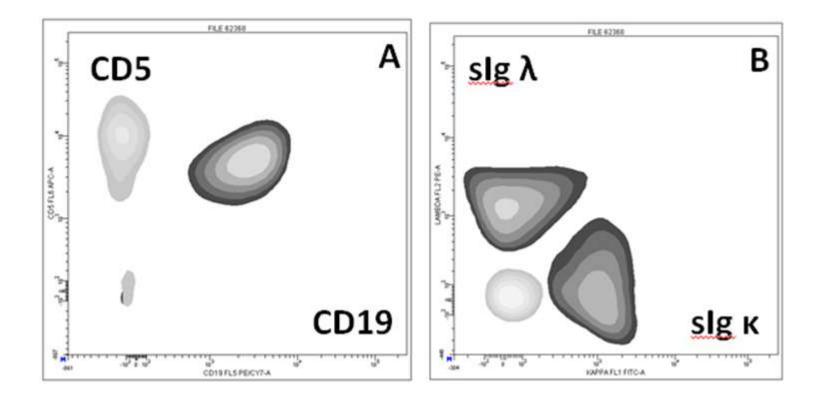
THIS IS AN IMAGE DRIVEN DIAGNOSTIC PROCEDURE

THIS ALSO IS AN IMAGE DRIVEN DIAGNOSTIC PROCEDURE!

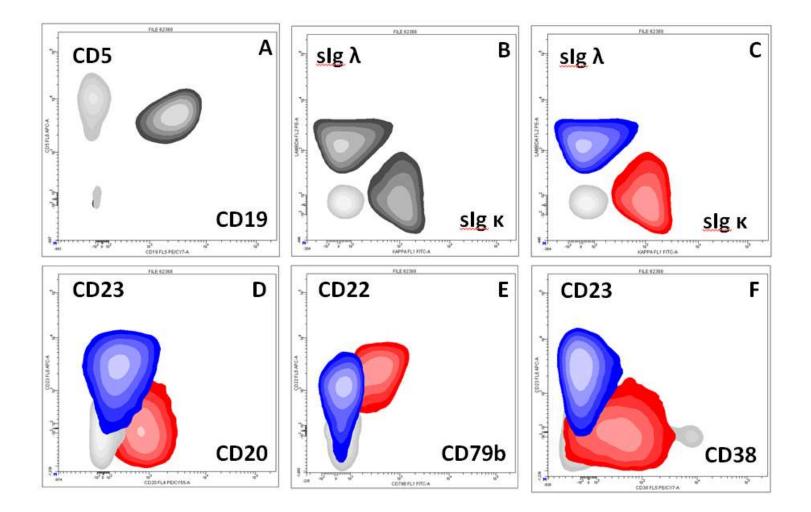
FCL

B-CLL

HCL

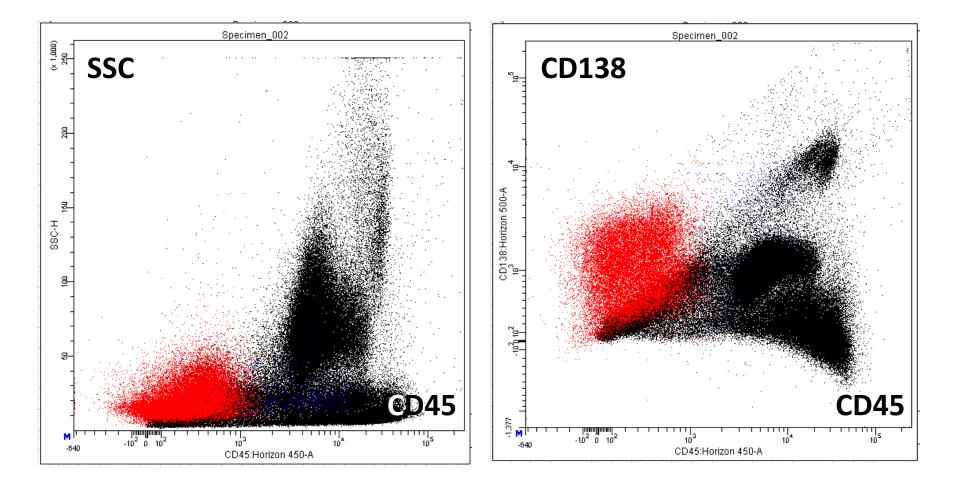

TYPICAL DISEASE-RELATED BEHAVIOUR OF THE EXPRESSION OF B-SPECIFIC ANTIGENS FCL: FOLLICULAR LYMPHOMA; B-CLL: CHRONIC LYMPHATIC LEUKEMIA; HCL: HAIRY CELL LEUKEMIA. RED: PATHOLOGICAL CELLS; BLUE: NORMAL RESIDUAL B LYMPHOCYTES

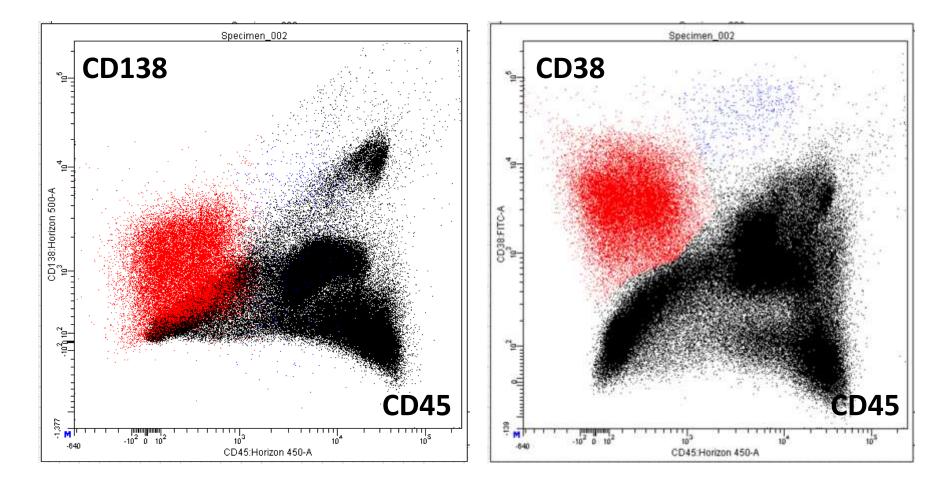
AND WHICH ARE OUR STRATEGIES TO GET BETTER CYTOMETRIC "DIAGNOSES"?


 Exploiting the increased data-set dimensionality to ameliorate diagnostic accuracy The more complex the analytical process employed, the greater the likelihood that flow cytometry will be able to identify and characterize an abnormal population in a heterogeneous sample.

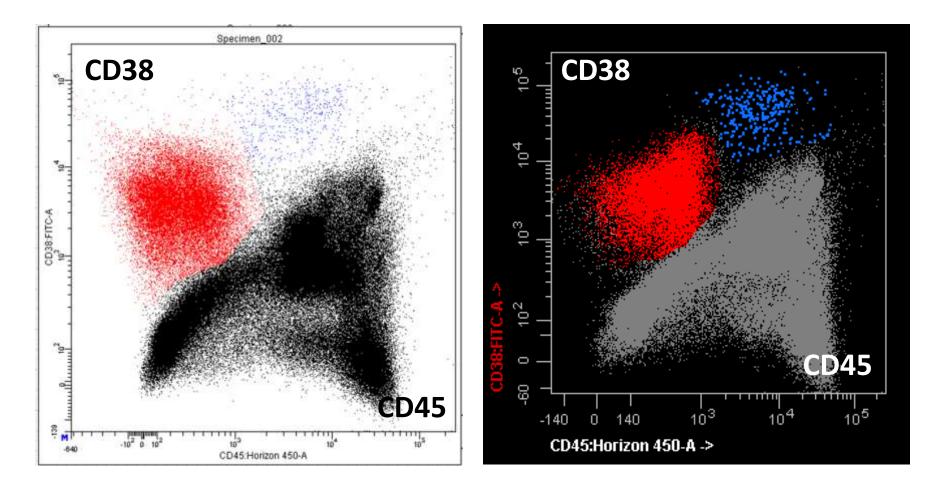
Borowitz, 1997

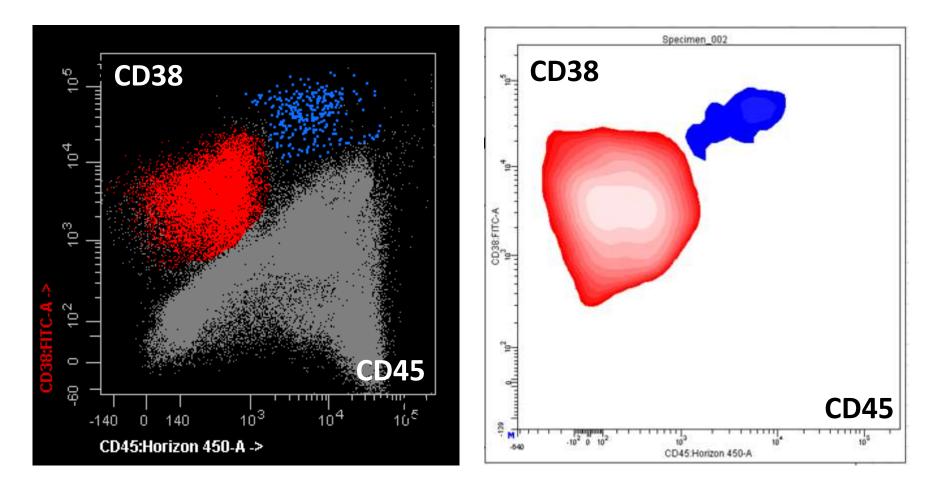
THINGS ARE NOT ALWAYS AS THEY LOOK LIKE...

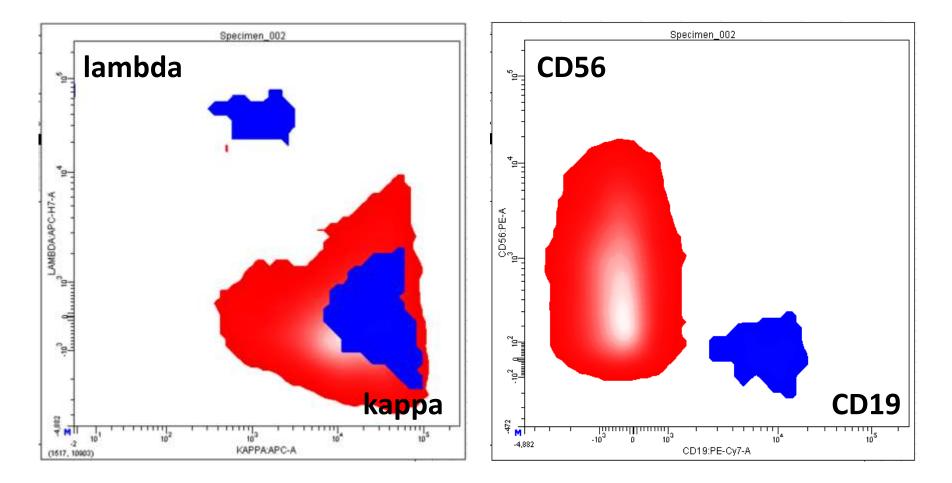

A CASE OF COMPOSITE LYMPHOMA


AND WHICH ARE OUR STRATEGIES TO GET BETTER CYTOMETRIC "DIAGNOSES"?

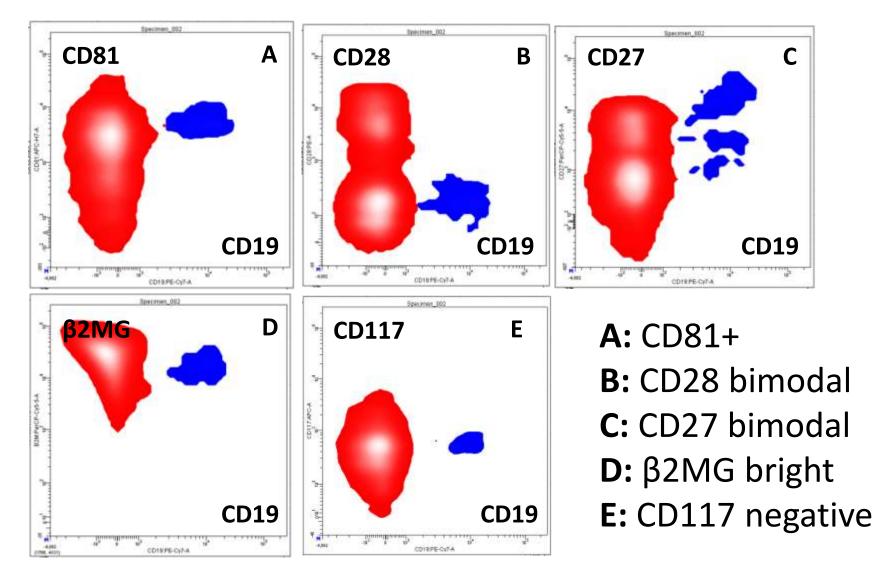
 Exploiting the increased data-set dimensionality to ameliorate sensitivity


A TWELVE COLOR ANALYSIS OF A MINOR PLASMA CELL SUBSET


A TWELVE COLOR ANALYSIS OF A MINOR PLASMA CELL SUBSET

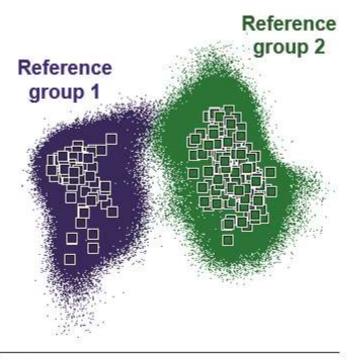

A TWELVE COLOR ANALYSIS OF A MINOR PLASMA CELL SUBSET (0.3%)

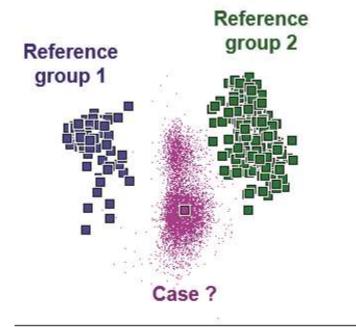
A TWELVE COLOR ANALYSIS OF A MINOR PLASMA CELL SUBSET (0.3%)


A TWELVE COLOR ANALYSIS OF A MINOR PLASMA CELL SUBSET (0.3%)

ANTIGENS WITH A PROGNOSTIC MEANING IN MULTIPLE MYELOMA

- **CD27**: Low CD27 expression in plasma cell dyscrasias correlates with high-risk disease
- **CD28**: CD28 expression correlates with tumor progression
- **CD81**: CD81 expression correlates with adverse prognosis
- **CD117**: CD117 expression is associated with a favorable outcome
- **β2-MG**: B2-microglobulin expression is significantly higher in clonal PC as compared to normal PC


ANTIGENS WITH A PROGNOSTIC MEANING IN MULTIPLE MYELOMA



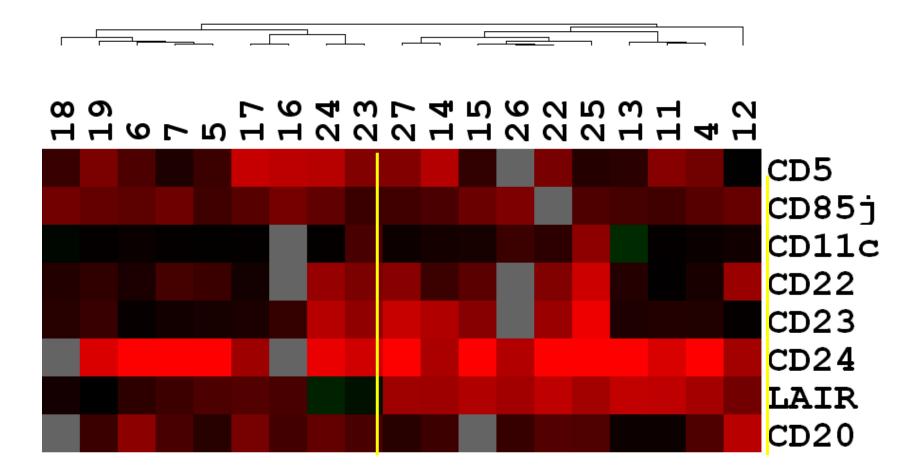
AND WHICH ARE OUR STRATEGIES TO GET BETTER CYTOMETRIC "DIAGNOSES"?

- Exploiting the increased data-set dimensionality to allow better data analysis
 - Comparing by PCA the behavior of a subset of yours with the behavior of a certified one
 - Feeding unsupervised algorithms
 - Applying a boolean approach to your data

COMPARING THE BEHAVIOR

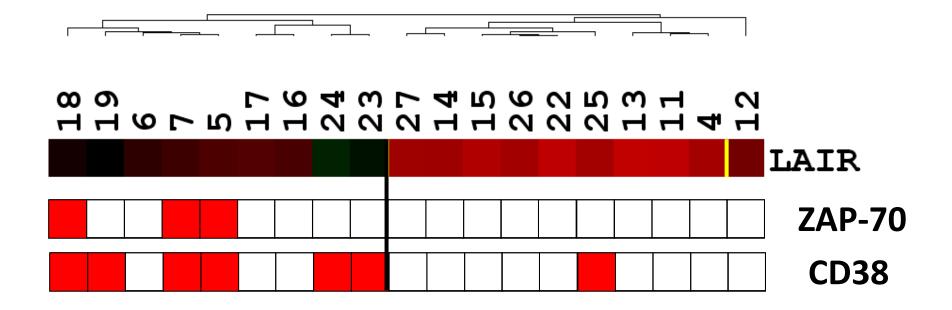
APS 1

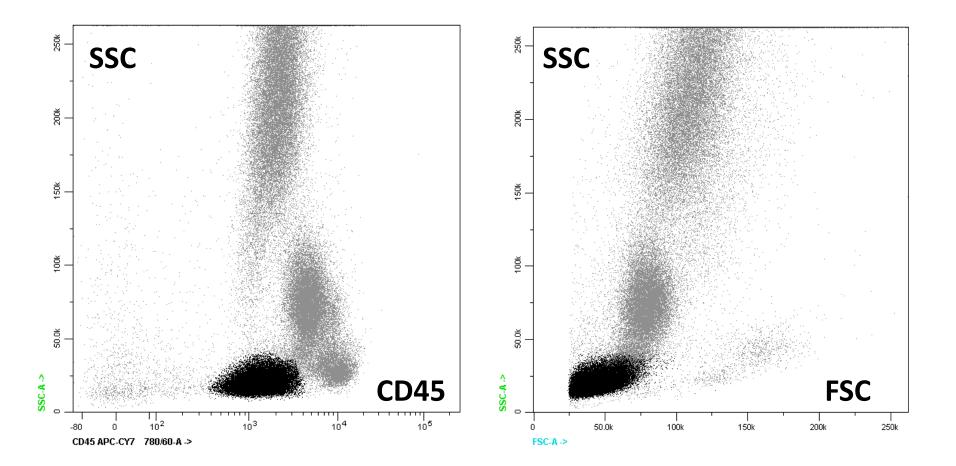
LECREVISSE 2010

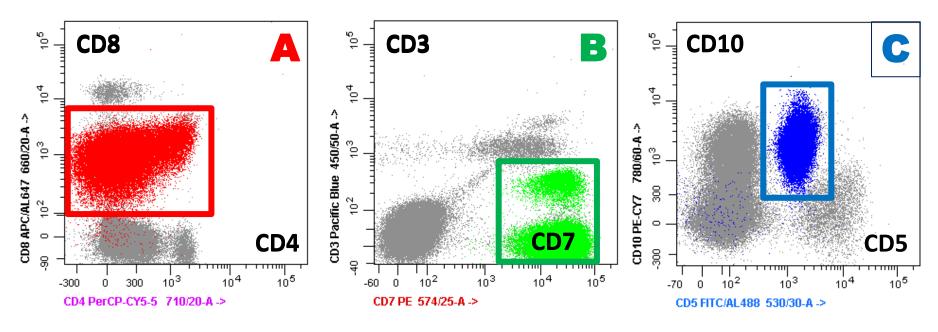

FEEDING UNSUPERVISED ALGORITHMS

SUBJECTS

🔀 Mici	rosoft Excel - DATASET8.x	ds																		
18) B	le Modifica Visualizza (Inserisci	Formato	Strume	nti Dati	Figest	ra										Digitare I	una comar	nda.	•
		1 X B	h 12 -	de	-	- 10 - 3	E - 3	\$1 EL	mo	R	» via			10	- • G	l de s			E	
		0,460160	4278075				CE		Real of the			•								-
	A	B	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	
15	AG RFI	4	5	6	7	11	12	13	14	15	16	17	18	19	22	23	24	25	26	
2	CD5	13,55	3,92	5,83	1,97	21,70	0,97	2,72	62,17	3,11	75,76	93,72	3,65	16,94	16,05	19,54	66,28	2,36		2
ā	CD79b	1,76	1,74	10,12	14,81	4,03		0,88		21,92		2,51	3,47	5,07	4,10	2,42	3,11	4,62		4
- i s	CD85j	7,46	4,28	8,58	12,58	4,46	10,46	4,88	5,52	11,58	14,28	7,43	14,22	9,74		3,82	9,25	5,97	18,39	
6	CD11c	1,27	1,08	1,28	1,10	1,12	1,49	0,37	1,62	1,72		1,10	0,87	1,11	2,74	5,42	1,11	26,27	3,93	1
- C	CD22	1,76	3,78	1,85	4,89	1,06	34,36	2,33	3,90	8,14		1,55	2,27	3,02	19,24	16,77	31,38	111,82	1	2
7	CD23	2,15	1,70	1,19	1,52	2,21	1,14	2,02	57,03	22,41	3,31	1,87	2,45	3,68	34,79	27,53	64,84	238,21	1	9
0	CD24	921,78	890,82	334,13	545,04	146,09	42,02	1516,74	50,19	686,03		37,99		149,25	467,86	119,72	212,85	643,72	59,96	33
	LAIR	43,86	5,79	2,83	4,13	79,00	13,98	83,69	38,05	58,45	5,26	6,80	1,60	1,00	80,70	0,67	0,45	41,94	40,93	3
10	6030	6,04	2,48	25,28	5,25	1,32	69,69	1,32	4,05		4,55	15,49		3,82	6,80	5,43	9,55	6,17	3,56	2
11	LC	17,91		33,48	49.07	64,57	348,98	0,86	12,28	74,36	13,70	33.86	52,82	22,21	190,59		25,05			1

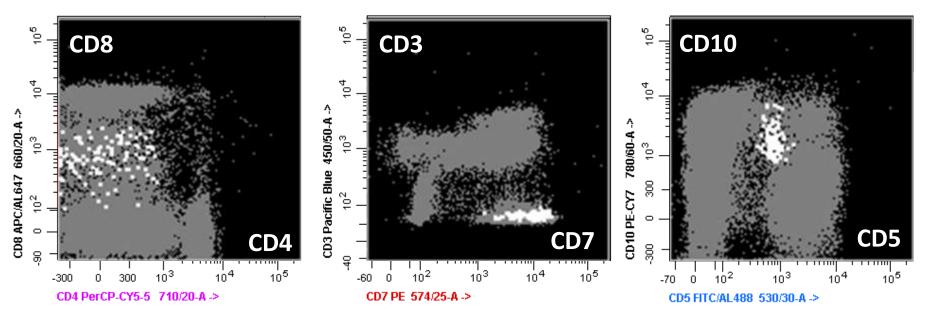

ANTIGENS EXPRESSION (MFI)


RESULTS OF A NOT SUPERVISIONED CLUSTER ANALYSIS BASED ON MFI OF CD5, CD11c, CD20, CD22, CD23, CD24, CD85j AND LAIR



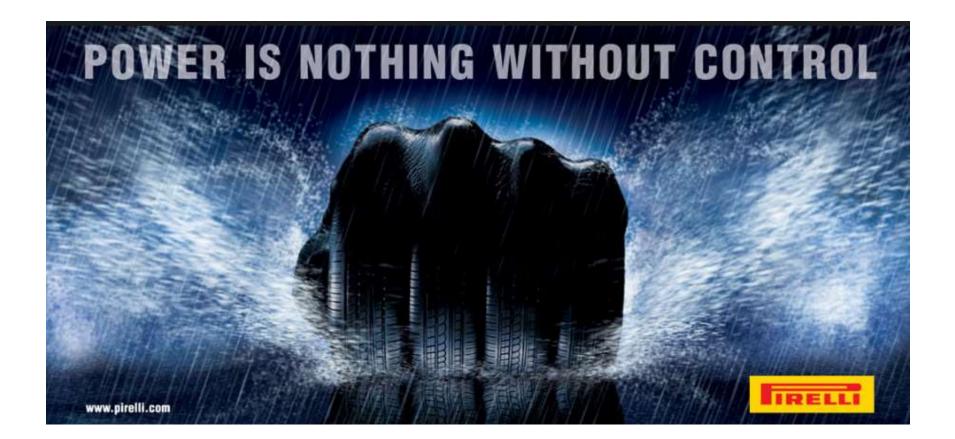
20 B-CLL PATIENTS

DISTRIBUTION OF TWO GENERALLY ACCEPTED PROGNOSTIC MARKERS IN THE TWO MAIN CLUSTERS




A: CD8 dim, CD4 neg & CD8 dim, CD4 dim B: CD7 pos, CD3 neg & CD7 pos, CD3 dim C: CD5 dim, CD10 pos

A: CD8 dim, CD4 neg & CD8 dim, CD4 dim B: CD7 pos, CD3 neg & CD7 pos, CD3 dim


C: CD5 dim, CD10 pos

SENSITIVITY

- TOTAL ANALYZED EVENTS: 2 x 10⁶
- ABNORMAL EVENTS FOUND: 116
- FREQUENCY OF ABN. EVENTS: 0,006

BUT REMEMBER!

AND SO, WHICH ARE OUR **FINAL** STRATEGIES TO KEEP THIS POWER UNDER OUR CONTROL??

- Promoting
 - Harmonization
 - Standardization
 - Creation of guidelines
 - Compliance with guidelines
 - Education

IN A WORD: QUALITY

"...there is no definition...of quality ...you know it when you find it!"

> **Robert Pirsig (1974)** Zen and the Art of Motorcycle Maintenance

ΕΥΧΑΡΙΣΤΩ